Tail inequalities for sums of random matrices that depend on the intrinsic dimension
نویسندگان
چکیده
This work provides exponential tail inequalities for sums of random matrices that depend only on intrinsic dimensions rather than explicit matrix dimensions. These tail inequalities are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the explicit dimensions are large or infinite. Some applications to covariance estimation and approximate matrix multiplication are given to illustrate the utility of the new bounds.
منابع مشابه
Dimension-free tail inequalities for sums of random matrices
We derive exponential tail inequalities for sums of random matrices with no dependence on the explicit matrix dimensions. These are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the dimension is large or infinite. Some applications to principal component analysis a...
متن کاملUser-friendly Tail Bounds for Matrix Martingales
This report presents probability inequalities for sums of adapted sequences of random, self-adjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. The methods also specialize to sums of independent random matrices. 1. Main Results This technical report is...
متن کاملUser-Friendly Tail Bounds for Sums of Random Matrices
This work presents probability inequalities for sums of independent, random, selfadjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of rectangular matrices follow as an immediate corollary, and similar techniques yiel...
متن کاملComplete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کامل