Tail inequalities for sums of random matrices that depend on the intrinsic dimension

نویسندگان

  • Daniel Hsu
  • Sham M. Kakade
  • Tong Zhang
چکیده

This work provides exponential tail inequalities for sums of random matrices that depend only on intrinsic dimensions rather than explicit matrix dimensions. These tail inequalities are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the explicit dimensions are large or infinite. Some applications to covariance estimation and approximate matrix multiplication are given to illustrate the utility of the new bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension-free tail inequalities for sums of random matrices

We derive exponential tail inequalities for sums of random matrices with no dependence on the explicit matrix dimensions. These are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the dimension is large or infinite. Some applications to principal component analysis a...

متن کامل

User-friendly Tail Bounds for Matrix Martingales

This report presents probability inequalities for sums of adapted sequences of random, self-adjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. The methods also specialize to sums of independent random matrices. 1. Main Results This technical report is...

متن کامل

User-Friendly Tail Bounds for Sums of Random Matrices

This work presents probability inequalities for sums of independent, random, selfadjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of rectangular matrices follow as an immediate corollary, and similar techniques yiel...

متن کامل

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012